Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 280
Filter
1.
Front Public Health ; 12: 1342937, 2024.
Article in English | MEDLINE | ID: mdl-38601490

ABSTRACT

Background: The healthcare sector demands a higher degree of responsibility, trustworthiness, and accountability when implementing Artificial Intelligence (AI) systems. Machine learning operations (MLOps) for AI-based medical diagnostic systems are primarily focused on aspects such as data quality and confidentiality, bias reduction, model deployment, performance monitoring, and continuous improvement. However, so far, MLOps techniques do not take into account the need to provide resilience to disturbances such as adversarial attacks, including fault injections, and drift, including out-of-distribution. This article is concerned with the MLOps methodology that incorporates the steps necessary to increase the resilience of an AI-based medical diagnostic system against various kinds of disruptive influences. Methods: Post-hoc resilience optimization, post-hoc predictive uncertainty calibration, uncertainty monitoring, and graceful degradation are incorporated as additional stages in MLOps. To optimize the resilience of the AI based medical diagnostic system, additional components in the form of adapters and meta-adapters are utilized. These components are fine-tuned during meta-training based on the results of adaptation to synthetic disturbances. Furthermore, an additional model is introduced for post-hoc calibration of predictive uncertainty. This model is trained using both in-distribution and out-of-distribution data to refine predictive confidence during the inference mode. Results: The structure of resilience-aware MLOps for medical diagnostic systems has been proposed. Experimentally confirmed increase of robustness and speed of adaptation for medical image recognition system during several intervals of the system's life cycle due to the use of resilience optimization and uncertainty calibration stages. The experiments were performed on the DermaMNIST dataset, BloodMNIST and PathMNIST. ResNet-18 as a representative of convolutional networks and MedViT-T as a representative of visual transformers are considered. It is worth noting that transformers exhibited lower resilience than convolutional networks, although this observation may be attributed to potential imperfections in the architecture of adapters and meta-adapters. Сonclusion: The main novelty of the suggested resilience-aware MLOps methodology and structure lie in the separating possibilities and activities on creating a basic model for normal operating conditions and ensuring its resilience and trustworthiness. This is significant for the medical applications as the developer of the basic model should devote more time to comprehending medical field and the diagnostic task at hand, rather than specializing in system resilience. Resilience optimization increases robustness to disturbances and speed of adaptation. Calibrated confidences ensure the recognition of a portion of unabsorbed disturbances to mitigate their impact, thereby enhancing trustworthiness.


Subject(s)
Artificial Intelligence , Resilience, Psychological , Machine Learning , Awareness , Data Accuracy
2.
JMIR Med Educ ; 10: e52674, 2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38602313

ABSTRACT

Background: Medical history contributes approximately 80% to a diagnosis, although physical examinations and laboratory investigations increase a physician's confidence in the medical diagnosis. The concept of artificial intelligence (AI) was first proposed more than 70 years ago. Recently, its role in various fields of medicine has grown remarkably. However, no studies have evaluated the importance of patient history in AI-assisted medical diagnosis. Objective: This study explored the contribution of patient history to AI-assisted medical diagnoses and assessed the accuracy of ChatGPT in reaching a clinical diagnosis based on the medical history provided. Methods: Using clinical vignettes of 30 cases identified in The BMJ, we evaluated the accuracy of diagnoses generated by ChatGPT. We compared the diagnoses made by ChatGPT based solely on medical history with the correct diagnoses. We also compared the diagnoses made by ChatGPT after incorporating additional physical examination findings and laboratory data alongside history with the correct diagnoses. Results: ChatGPT accurately diagnosed 76.6% (23/30) of the cases with only the medical history, consistent with previous research targeting physicians. We also found that this rate was 93.3% (28/30) when additional information was included. Conclusions: Although adding additional information improves diagnostic accuracy, patient history remains a significant factor in AI-assisted medical diagnosis. Thus, when using AI in medical diagnosis, it is crucial to include pertinent and correct patient histories for an accurate diagnosis. Our findings emphasize the continued significance of patient history in clinical diagnoses in this age and highlight the need for its integration into AI-assisted medical diagnosis systems.


Subject(s)
Artificial Intelligence , Medicine , Humans , Laboratories , Mental Processes , Physical Examination
3.
Heliyon ; 10(5): e27411, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38495193

ABSTRACT

Non-communicable diseases, such as cardiovascular disease, cancer, chronic respiratory diseases, and diabetes, are responsible for approximately 71% of all deaths worldwide. Stroke, a cerebrovascular disorder, is one of the leading contributors to this burden among the top three causes of death. Early recognition of symptoms can encourage a balanced lifestyle and provide essential information for stroke prediction. To identify a stroke patient and risk factors, machine learning (ML) is a key tool for physicians. Due to different data measurement scales and their probability distributional assumptions, ML-based algorithms struggle to detect risk factors. Furthermore, when dealing with risk factors with high-dimensional features, learning algorithms struggle with complexity. In this study, rigorous statistical tests are used to identify risk factors, and PCA-FA (Integration of Principal Components and Factors) and FPCA (Factor Based PCA) approaches are proposed for projecting suitable feature representations for improving learning algorithm performances. The study dataset consists of different clinical, lifestyle, and genetic attributes, allowing for a comprehensive analysis of potential risk factors associated with stroke, which contains 5110 patient records. Using significant test (P-value <0.05), chi-square and independent sample t-test identified age, heart_disease, hypertension, work_type, ever_married, bmi, and smoking_status as risk factors for stroke. To develop the predicting model with proposed feature extraction techniques, random forests approach provides the best results when utilizing the PCA-FA method. The best accuracy rate for this approach is 92.55%, while the AUC score is 98.15%. The prediction accuracy has increased from 2.19% to 19.03% compared to the existing work. Additionally, the prediction results is robustified and reproducible with a stacking ensemble-based classification algorithm. We also developed a web-based application to help doctors diagnose stroke risk based on the findings of this study, which could be used as an additional tool to help doctors diagnose.

4.
Med Biol Eng Comput ; 2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38507122

ABSTRACT

Cervical cancer is caused in the vast majority of cases by the human papilloma virus (HPV) through sexual contact and requires a specific molecular-based analysis to be detected. As an HPV vaccine is available, the incidence of cervical cancer is up to ten times higher in areas without adequate healthcare resources. In recent years, liquid cytology has been used to overcome these shortcomings and perform mass screening. In addition, classifiers based on convolutional neural networks can be developed to help pathologists diagnose the disease. However, these systems always require the final verification of a pathologist to make a final diagnosis. For this reason, explainable AI techniques are required to highlight the most significant data to the healthcare professional, as it can be used to determine the confidence in the results and the areas of the image used for classification (allowing the professional to point out the areas he/she thinks are most important and cross-check them against those detected by the system in order to create incremental learning systems). In this work, a 4-phase optimization process is used to obtain a custom deep-learning classifier for distinguishing between 4 severity classes of cervical cancer with liquid-cytology images. The final classifier obtains an accuracy over 97% for 4 classes and 100% for 2 classes with execution times under 1 s (including the final report generation). Compared to previous works, the proposed classifier obtains better accuracy results with a lower computational cost.

5.
Comput Methods Programs Biomed ; 248: 108113, 2024 May.
Article in English | MEDLINE | ID: mdl-38479148

ABSTRACT

BACKGROUND AND OBJECTIVE: In recent years, Artificial Intelligence (AI) and in particular Deep Neural Networks (DNN) became a relevant research topic in biomedical image segmentation due to the availability of more and more data sets along with the establishment of well known competitions. Despite the popularity of DNN based segmentation on the research side, these techniques are almost unused in the daily clinical practice even if they could support effectively the physician during the diagnostic process. Apart from the issues related to the explainability of the predictions of a neural model, such systems are not integrated in the diagnostic workflow, and a standardization of their use is needed to achieve this goal. METHODS: This paper presents IODeep a new DICOM Information Object Definition (IOD) aimed at storing both the weights and the architecture of a DNN already trained on a particular image dataset that is labeled as regards the acquisition modality, the anatomical region, and the disease under investigation. RESULTS: The IOD architecture is presented along with a DNN selection algorithm from the PACS server based on the labels outlined above, and a simple PACS viewer purposely designed for demonstrating the effectiveness of the DICOM integration, while no modifications are required on the PACS server side. Also a service based architecture in support of the entire workflow has been implemented. CONCLUSION: IODeep ensures full integration of a trained AI model in a DICOM infrastructure, and it is also enables a scenario where a trained model can be either fine-tuned with hospital data or trained in a federated learning scheme shared by different hospitals. In this way AI models can be tailored to the real data produced by a Radiology ward thus improving the physician decision making process. Source code is freely available at https://github.com/CHILab1/IODeep.git.


Subject(s)
Deep Learning , Radiology Information Systems , Artificial Intelligence , Computers , Software
6.
Comput Med Imaging Graph ; 114: 102368, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38518412

ABSTRACT

Bipolar disorder (BD) is characterized by recurrent episodes of depression and mild mania. In this paper, to address the common issue of insufficient accuracy in existing methods and meet the requirements of clinical diagnosis, we propose a framework called Spatio-temporal Feature Fusion Transformer (STF2Former). It improves on our previous work - MFFormer by introducing a Spatio-temporal Feature Aggregation Module (STFAM) to learn the temporal and spatial features of rs-fMRI data. It promotes intra-modality attention and information fusion across different modalities. Specifically, this method decouples the temporal and spatial dimensions and designs two feature extraction modules for extracting temporal and spatial information separately. Extensive experiments demonstrate the effectiveness of our proposed STFAM in extracting features from rs-fMRI, and prove that our STF2Former can significantly outperform MFFormer and achieve much better results among other state-of-the-art methods.


Subject(s)
Learning , Mental Disorders , Humans
7.
Artif Intell Med ; 149: 102769, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38462271

ABSTRACT

AI has long been regarded as a panacea for decision-making and many other aspects of knowledge work; as something that will help humans get rid of their shortcomings. We believe that AI can be a useful asset to support decision-makers, but not that it should replace decision-makers. Decision-making uses algorithmic analysis, but it is not solely algorithmic analysis; it also involves other factors, many of which are very human, such as creativity, intuition, emotions, feelings, and value judgments. We have conducted semi-structured open-ended research interviews with 17 dermatologists to understand what they expect from an AI application to deliver to medical diagnosis. We have found four aggregate dimensions along which the thinking of dermatologists can be described: the ways in which our participants chose to interact with AI, responsibility, 'explainability', and the new way of thinking (mindset) needed for working with AI. We believe that our findings will help physicians who might consider using AI in their diagnosis to understand how to use AI beneficially. It will also be useful for AI vendors in improving their understanding of how medics want to use AI in diagnosis. Further research will be needed to examine if our findings have relevance in the wider medical field and beyond.


Subject(s)
Judgment , Physicians , Humans , Emotions
8.
Curr Med Imaging ; 2024 Feb 07.
Article in English | MEDLINE | ID: mdl-38333978

ABSTRACT

BACKGROUND: Cancer is a major disease that threatens human life and health. Raman spectroscopy can provide an effective detection method. OBJECTIVE: The study aimed to introduce the application of Raman spectroscopy to tumor detection. We have introduced the current mainstream Raman spectroscopy technology and related application research. METHODS: This article has first introduced the grim situation of malignant tumors in the world. The advantages of tumor diagnosis based on Raman spectroscopy have also been analyzed. Secondly, various Raman spectroscopy techniques applied in the medical field are introduced. Several studies on the application of Raman spectroscopy to tumors in different parts of the human body are discussed. Then the advantages of combining deep learning with Raman spectroscopy in the diagnosis of tumors are discussed. Finally, the related problems of tumor diagnosis methods based on Raman spectroscopy are pointed out. This may provide useful clues for future work. CONCLUSION: Raman spectroscopy can be an effective method for diagnosing tumors. Moreover, Raman spectroscopy diagnosis combined with deep learning can provide more convenient and accurate detection results.

9.
Sci Rep ; 14(1): 4309, 2024 02 21.
Article in English | MEDLINE | ID: mdl-38383690

ABSTRACT

Parkinson's disease (PD) is a progressively debilitating neurodegenerative disorder that primarily affects the dopaminergic system in the basal ganglia, impacting millions of individuals globally. The clinical manifestations of the disease include resting tremors, muscle rigidity, bradykinesia, and postural instability. Diagnosis relies mainly on clinical evaluation, lacking reliable diagnostic tests and being inherently imprecise and subjective. Early detection of PD is crucial for initiating treatments that, while unable to cure the chronic condition, can enhance the life quality of patients and alleviate symptoms. This study explores the potential of utilizing long-short term memory neural networks (LSTM) with attention mechanisms to detect Parkinson's disease based on dual-task walking test data. Given that the performance of networks is significantly inductance by architecture and training parameter choices, a modified version of the recently introduced crayfish optimization algorithm (COA) is proposed, specifically tailored to the requirements of this investigation. The proposed optimizer is assessed on a publicly accessible real-world clinical gait in Parkinson's disease dataset, and the results demonstrate its promise, achieving an accuracy of 87.4187 % for the best-constructed models.


Subject(s)
Parkinson Disease , Humans , Parkinson Disease/diagnosis , Memory, Short-Term , Neural Networks, Computer , Basal Ganglia , Gait
10.
Health Sci Rep ; 7(2): e1919, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38384976

ABSTRACT

Background and Aims: Due to the COVID-19 pandemic, a precise and reliable diagnosis of this disease is critical. The use of clinical decision support systems (CDSS) can help facilitate the diagnosis of COVID-19. This scoping review aimed to investigate the role of CDSS in diagnosing COVID-19. Methods: We searched four databases (Web of Science, PubMed, Scopus, and Embase) using three groups of keywords related to CDSS, COVID-19, and diagnosis. To collect data from studies, we utilized a data extraction form that consisted of eight fields. Three researchers selected relevant articles and extracted data using a data collection form. To resolve any disagreements, we consulted with a fourth researcher. Results: A search of the databases retrieved 2199 articles, of which 68 were included in this review after removing duplicates and irrelevant articles. The studies used nonknowledge-based CDSS (n = 52) and knowledge-based CDSS (n = 16). Convolutional Neural Networks (CNN) (n = 33) and Support Vector Machine (SVM) (n = 8) were employed to design the CDSS in most of the studies. Accuracy (n = 43) and sensitivity (n = 35) were the most common metrics for evaluating CDSS. Conclusion: CDSS for COVID-19 diagnosis have been developed mainly through machine learning (ML) methods. The greater use of these techniques can be due to their availability of public data sets about chest imaging. Although these studies indicate high accuracy for CDSS based on ML, their novelty and data set biases raise questions about replacing these systems as clinician assistants in decision-making. Further studies are needed to improve and compare the robustness and reliability of nonknowledge-based and knowledge-based CDSS in COVID-19 diagnosis.

11.
Comput Biol Med ; 171: 108118, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38394799

ABSTRACT

Neural Architecture Search (NAS) has been widely applied to automate medical image diagnostics. However, traditional NAS methods require significant computational resources and time for performance evaluation. To address this, we introduce the GrMoNAS framework, designed to balance diagnostic accuracy and efficiency using proxy datasets for granularity transformation and multi-objective optimization algorithms. The approach initiates with a coarse granularity phase, wherein diverse candidate neural architectures undergo evaluation utilizing a reduced proxy dataset. This initial phase facilitates the swift and effective identification of architectures exhibiting promise. Subsequently, in the fine granularity phase, a comprehensive validation and optimization process is undertaken for these identified architectures. Concurrently, employing multi-objective optimization and Pareto frontier sorting aims to enhance both accuracy and computational efficiency simultaneously. Importantly, the GrMoNAS framework is particularly suitable for hospitals with limited computational resources. We evaluated GrMoNAS in a range of medical scenarios, such as COVID-19, Skin cancer, Lung, Colon, and Acute Lymphoblastic Leukemia diseases, comparing it against traditional models like VGG16, VGG19, and recent NAS approaches including GA-CNN, EBNAS, NEXception, and CovNAS. The results show that GrMoNAS achieves comparable or superior diagnostic precision, significantly enhancing diagnostic efficiency. Moreover, GrMoNAS effectively avoids local optima, indicating its significant potential for precision medical diagnosis.


Subject(s)
Algorithms , COVID-19 , Humans , COVID-19/diagnosis , Hospitals , Plant Extracts , COVID-19 Testing
12.
Diagnosis (Berl) ; 2024 Jan 30.
Article in English | MEDLINE | ID: mdl-38284830

ABSTRACT

OBJECTIVES: Perform a pilot study of online game-based learning (GBL) using natural frequencies and feedback to teach diagnostic reasoning. METHODS: We conducted a multicenter randomized-controlled trial of computer-based training. We enrolled medical students, residents, practicing physicians and nurse practitioners. The intervention was a 45 min online GBL training vs. control education with a primary outcome of score on a scale of diagnostic accuracy (composed of 10 realistic case vignettes, requesting estimates of probability of disease after a test result, 0-100 points total). RESULTS: Of 90 participants there were 30 students, 30 residents and 30 practicing clinicians. Of these 62 % (56/90) were female and 52 % (47/90) were white. Sixty were randomized to GBL intervention and 30 to control. The primary outcome of diagnostic accuracy immediately after training was better in GBL (mean accuracy score 59.4) vs. control (37.6), p=0.0005. The GBL group was then split evenly (30, 30) into no further intervention or weekly emails with case studies. Both GBL groups performed better than control at one-month and some continued effect at three-month follow up. Scores at one-month GBL (59.2) GBL plus emails (54.2) vs. control (33.9), p=0.024; three-months GBL (56.2), GBL plus emails (42.9) vs. control (35.1), p=0.076. Most participants would recommend GBL to colleagues (73 %), believed it was enjoyable (92 %) and believed it improves test interpretation (95 %). CONCLUSIONS: In this pilot study, a single session with GBL nearly doubled score on a scale of diagnostic accuracy in medical trainees and practicing clinicians. The impact of GBL persisted after three months.

13.
Comput Biol Med ; 169: 107838, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38171259

ABSTRACT

To improve the detection of COVID-19, this paper researches and proposes an effective swarm intelligence algorithm-driven multi-threshold image segmentation (MTIS) method. First, this paper proposes a novel RIME structure integrating the Co-adaptive hunting and dispersed foraging strategies, called CDRIME. Specifically, the Co-adaptive hunting strategy works in coordination with the basic search rules of RIME at the individual level, which not only facilitates the algorithm to explore the global optimal solution but also enriches the population diversity to a certain extent. The dispersed foraging strategy further enriches the population diversity to help the algorithm break the limitation of local search and thus obtain better convergence. Then, on this basis, a new multi-threshold image segmentation method is proposed by combining the 2D non-local histogram with 2D Kapur entropy, called CDRIME-MTIS. Finally, the results of experiments based on IEEE CEC2017, IEEE CEC2019, and IEEE CEC2022 demonstrate that CDRIME has superior performance than some other basic, advanced, and state-of-the-art algorithms in terms of global search, convergence performance, and escape from local optimality. Meanwhile, the segmentation experiments on COVID-19 X-ray images demonstrate that CDRIME is more advantageous than RIME and other peers in terms of segmentation effect and adaptability to different threshold levels. In conclusion, the proposed CDRIME significantly enhances the global optimization performance and image segmentation of RIME and has great potential to improve COVID-19 diagnosis.


Subject(s)
COVID-19 , Humans , COVID-19 Testing , X-Rays , Algorithms , Entropy
14.
Anal Bioanal Chem ; 416(6): 1443-1455, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38228897

ABSTRACT

This study presents a groundbreaking approach for the early detection of chronic kidney disease (CKD) and other urological disorders through an image-label-free, multi-dipstick identification method, eliminating the need for complex machinery, label libraries, or preset coordinates. Our research successfully identified reaction pads on 187 multi-dipsticks, each with 11 pads, leveraging machine learning algorithms trained on human urine data. This technique aims to surpass traditional colourimetric methods and concentration-colour curve fitting, offering more robust and precise community screening and home monitoring capabilities. The developed algorithms enhance the generalizability of machine learning models by extracting primary colours and correcting urine colours on each reaction pad. This method's cost-effectiveness and portability are significant, as it requires no additional equipment beyond a standard smartphone. The system's performance rivals professional medical equipment without auxiliary lighting or flash under regular indoor light conditions, effectively managing false positives and negatives across various categories with remarkable accuracy. In a controlled experimental setting, we found that random forest algorithms, based on a Bagging strategy and applied in the HSV colour space, showed optimal results in smartphone-assisted urinalysis. This study also introduces a novel urine colour correction method, significantly improving machine learning model performance. Additionally, ISO parameters were identified as crucial factors influencing the accuracy of smartphone-based urinalysis in the absence of additional lighting or optical configurations, highlighting the potential of this technology in low-resource settings.


Subject(s)
Renal Insufficiency, Chronic , Smartphone , Humans , Urinalysis/methods , Algorithms , Machine Learning
15.
Heliyon ; 10(1): e23497, 2024 Jan 15.
Article in English | MEDLINE | ID: mdl-38169861

ABSTRACT

Hepato-Cellular Carcinoma (HCC) is the most common type of liver cancer that often occurs in people with chronic liver diseases such as cirrhosis. Although HCC is known as a fatal disease, early detection can lead to successful treatment and improve survival chances. In recent years, the development of computer recognition systems using machine learning approaches has been emphasized by researchers. The effective performance of these approaches for the diagnosis of HCC has been proven in a wide range of applications. With this motivation, this paper proposes a hybrid machine learning approach including effective feature selection and ensemble classification for HCC detection, which is developed based on the Harris Hawks Optimization (HHO) algorithm. The proposed ensemble classifier is based on the bagging technique and is configured based on the decision tree method. Meanwhile, HHO as an emerging meta-heuristic algorithm can select a subset of the most suitable features related to HCC for classification. In addition, the proposed method is equipped with several strategies for handling missing values and data normalization. The simulations are based on the HCC dataset collected by the Coimbra Hospital and University Center (CHUC). The results of the experiments prove the acceptable performance of the proposed method. Specifically, the proposed method with an accuracy of 97.13 % is superior in comparison with the equivalent methods such as LASSO and DTPSO.

16.
JMIR Res Protoc ; 12: e48544, 2023 Dec 28.
Article in English | MEDLINE | ID: mdl-38153775

ABSTRACT

BACKGROUND: Traditional health care systems face long-standing challenges, including patient diversity, geographical disparities, and financial constraints. The emergence of artificial intelligence (AI) in health care offers solutions to these challenges. AI, a multidisciplinary field, enhances clinical decision-making. However, imbalanced AI models may enhance health disparities. OBJECTIVE: This systematic review aims to investigate the economic performance and equity impact of AI in diagnostic imaging for skin, neurological, and pulmonary diseases. The research question is "To what extent does the use of AI in imaging exams for diagnosing skin, neurological, and pulmonary diseases result in improved economic outcomes, and does it promote equity in health care systems?" METHODS: The study is a systematic review of economic and equity evaluations following PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) and CHEERS (Consolidated Health Economic Evaluation Reporting Standards) guidelines. Eligibility criteria include articles reporting on economic evaluations or equity considerations related to AI-based diagnostic imaging for specified diseases. Data will be collected from PubMed, Embase, Scopus, Web of Science, and reference lists. Data quality and transferability will be assessed according to CHEC (Consensus on Health Economic Criteria), EPHPP (Effective Public Health Practice Project), and Welte checklists. RESULTS: This systematic review began in March 2023. The literature search identified 9,526 publications and, after full-text screening, 9 publications were included in the study. We plan to submit a manuscript to a peer-reviewed journal once it is finalized, with an expected completion date in January 2024. CONCLUSIONS: AI in diagnostic imaging offers potential benefits but also raises concerns about equity and economic impact. Bias in algorithms and disparities in access may hinder equitable outcomes. Evaluating the economic viability of AI applications is essential for resource allocation and affordability. Policy makers and health care stakeholders can benefit from this review's insights to make informed decisions. Limitations, including study variability and publication bias, will be considered in the analysis. This systematic review will provide valuable insights into the economic and equity implications of AI in diagnostic imaging. It aims to inform evidence-based decision-making and contribute to more efficient and equitable health care systems. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID): DERR1-10.2196/48544.

17.
Healthcare (Basel) ; 11(21)2023 Oct 27.
Article in English | MEDLINE | ID: mdl-37957985

ABSTRACT

In recent times, there has been considerable focus on harnessing artificial intelligence (AI) for medical image analysis and healthcare purposes. In this study, we introduce CADFU (Computer-Aided Diagnosis System for Foot Ulcers), a pioneering diabetic foot ulcer diagnosis system. The primary objective of CADFU is to detect and segment ulcers and similar chronic wounds in medical images. To achieve this, we employ two distinct algorithms. Firstly, DHuNeT, an innovative Dual-Phase Hyperactive UNet, is utilized for the segmentation task. Second, we used YOLOv8 for the task of detecting wounds. The DHuNeT autoencoder, employed for the wound segmentation task, is the paper's primary and most significant contribution. DHuNeT is the combination of sequentially stacking two UNet autoencoders. The hyperactive information transmission from the first UNet to the second UNet is the key idea of DHuNeT. The first UNet feeds the second UNet the features it has learned, and the two UNets combine their learned features to create new, more accurate, and effective features. We achieve good performance measures, especially in terms of the Dice co-efficient and precision, with segmentation scores of 85% and 92.6%, respectively. We obtain a mean average precision (mAP) of 86% in the detection task. Future hospitals could quickly monitor patients' health using the proposed CADFU system, which would be beneficial for both patients and doctors.

18.
Diagnostics (Basel) ; 13(21)2023 Oct 31.
Article in English | MEDLINE | ID: mdl-37958248

ABSTRACT

Influenza has been a stationary disease in Mexico since 2009, and this causes a high cost for the national public health system, including its detection using RT-qPCR tests, treatments, and absenteeism in the workplace. Despite influenza's relevance, the main clinical features to detect the disease defined by international institutions like the World Health Organization (WHO) and the United States Centers for Disease Control and Prevention (CDC) do not follow the same pattern in all populations. The aim of this work is to find a machine learning method to facilitate decision making in the clinical differentiation between positive and negative influenza patients, based on their symptoms and demographic features. The research sample consisted of 15480 records, including clinical and demographic data of patients with a positive/negative RT-qPCR influenza tests, from 2010 to 2020 in the public healthcare institutions of Mexico City. The performance of the methods for classifying influenza cases were evaluated with indices like accuracy, specificity, sensitivity, precision, the f1-measure and the area under the curve (AUC). Results indicate that random forest and bagging classifiers were the best supervised methods; they showed promise in supporting clinical diagnosis, especially in places where performing molecular tests might be challenging or not feasible.

19.
Sensors (Basel) ; 23(22)2023 Nov 08.
Article in English | MEDLINE | ID: mdl-38005421

ABSTRACT

Machine learning, powered by cloud servers, has found application in medical diagnosis, enhancing the capabilities of smart healthcare services. Research literature demonstrates that the support vector machine (SVM) consistently demonstrates remarkable accuracy in medical diagnosis. Nonetheless, safeguarding patients' health data privacy and preserving the intellectual property of diagnosis models is of paramount importance. This concern arises from the common practice of outsourcing these models to third-party cloud servers that may not be entirely trustworthy. Few studies in the literature have delved into addressing these issues within SVM-based diagnosis systems. These studies, however, typically demand substantial communication and computational resources and may fail to conceal classification results and protect model intellectual property. This paper aims to tackle these limitations within a multi-class SVM medical diagnosis system. To achieve this, we have introduced modifications to an inner product encryption cryptosystem and incorporated it into our medical diagnosis framework. Notably, our cryptosystem proves to be more efficient than the Paillier and multi-party computation cryptography methods employed in previous research. Although we focus on a medical application in this paper, our approach can also be used for other applications that need the evaluation of machine learning models in a privacy-preserving way such as electricity theft detection in the smart grid, electric vehicle charging coordination, and vehicular social networks. To assess the performance and security of our approach, we conducted comprehensive analyses and experiments. Our findings demonstrate that our proposed method successfully fulfills our security and privacy objectives while maintaining high classification accuracy and minimizing communication and computational overhead.


Subject(s)
Privacy , Support Vector Machine , Humans , Computer Security , Confidentiality , Machine Learning
20.
Adv Mater ; : e2306450, 2023 Oct 09.
Article in English | MEDLINE | ID: mdl-37812831

ABSTRACT

Magnetic particle imaging (MPI) is an emerging non-invasive tomographic technique based on the response of magnetic nanoparticles (MNPs) to oscillating drive fields at the center of a static magnetic gradient. In contrast to magnetic resonance imaging (MRI), which is driven by uniform magnetic fields and projects the anatomic information of the subjects, MPI directly tracks and quantifies MNPs in vivo without background signals. Moreover, it does not require radioactive tracers and has no limitations on imaging depth. This article first introduces the basic principles of MPI and important features of MNPs for imaging sensitivity, spatial resolution, and targeted biodistribution. The latest research aiming to optimize the performance of MPI tracers is reviewed based on their material composition, physical properties, and surface modifications. While the unique advantages of MPI have led to a series of promising biomedical applications, recent development of MPI in investigating vascular abnormalities in cardiovascular and cerebrovascular systems, and cancer are also discussed. Finally, recent progress and challenges in the clinical translation of MPI are discussed to provide possible directions for future research and development.

SELECTION OF CITATIONS
SEARCH DETAIL
...